
2016 International Workshop on Emerging ICT

Advanced Hash Join Scheme With Dynamic Hashing

KangMok Kim

Information and Communcation Engineering

Yenugnam University

Gyeungsan, Gyeungbuk, South Korea

seorihwa32@ynu.ac.kr

Gyu Sang Choi

Information and Communication Engineering

Yeungnam University

Gyeungsan, Gyeungbuk, South Korea

castchoi@ynu.ac.kr

Abstract—Grace Hash Join and Hybrid Hash Join are the

methods that avoid full-table scanning through partitioning stage

using a hash function. But these methods are spent for much time

on merge stage because foreign keys are not sorted so these

methods scan tables until last bucket. In this paper, we try to

solve the given problem with the help of Dynamic Hashing

method. Our suggested method is that we divide according to

MSB (Most Significant Bit) when we configure hash directory of

the table. If bucket overflow occurs or bucket is full we split the
bucket.

Keywords-component; Database, Join, Hybrid Hash Join,
Grace Hash Join, Dynamic Hashing

I. INTRODUCTION

In use huge rather massive Database Management System,

the join algorithms are used for efficient data processing. Join

algorithms are important algorithms while processing massive

data and have a feature that update data on memory repeatedly

[1,2,3]. Among them, Hash Join is one that uploads hash table

in memory based on one of the two given tables and extract
matching data when we scan another table and compare

uploaded hash table on memory and another table.

In this paper, we consider the problem of existing Hybrid

Hash Join algorithm. And we also explain Dynamic Hashing

algorithm expected to solve that problem.

We arrange our paper in the following manner. In Section 2

we explained the techniques Hybrid Hash Join Algorithm and

proposed Dynamic Hashing Algorithm while Section 3

describes the conclusion of our work.

II. THE DYNAMIC HASHING SCHEME

A. Motivation

Join operation in Structured Query Language (SQL)
produces a new table by combining two or more tables in
relational database management systems. The hash-join
scheme is one of the implementations of the join operations
and it shows high performance while compared to other
schemes. In addition, there are several variation of the scheme
exits like grace hash-join and hybrid hash-join. In this paper,
we will focus on the hybrid hash-join scheme since it will
provide higher performance compared to other hash-join
schemes.

Here in our work we measured the execution time of
hybrid hash-join scheme with two tables, R and S, where the
primary key in R table is the foreign key in S table. In this
experiment, we generated records for R and S tables by a
normal distribution, and the numbers of records in R and S
tables are 100K and 1M respectively. It means that the number
of records in S table is 10 times more than in R. In addition,
we set the record size to 16 bytes and the bucket size to 4
Kbytes.

Figure 1 shows the execution time of hybrid hash-join
operation. Whereas the elapsed time of hash is similar to disk
I/O time in the first phase, the probing time is the dominant
component of total execution time in the second phase
compared to building and disk I/O times. This probing
operation first selects a specific record in S table and then
keeps scanning the hash table of R table by comparing the
primary key in R table and the foreign key in S table until
finding the corresponding record in the hash table. It means
that the probing operation needs to scan the hash table of R
table multiple times. Thus, it is very important to minimize the
probing time, in order to improve the performance of the
hybrid hash-join operation.

Figure 1. The breakdown execution time of hybrid hash-join operation

B. The Proposed Scheme

Hybrid Hash Join Algorithm also spent to much time on
probe stage because a foreign key is not sorted so that method
are scanned until table’s last bucket. So we suggest Dynamic
Hashing Algorithm that can improve performance to solve the

2016 International Workshop on Emerging ICT

given problem by minimizing unnecessary comparison
operations.

Dynamic Hashing method uses a number of buckets
dynamically to solve overflow problem when records are
inserted frequently. So that algorithm increase or decrease
number of the bucket for saved record as occasion demands. So
this algorithm is used binary tree structure that used hashing
key as an index and we transpose to binary tree dynamically.

First of all, we provide each Identifier to Hash function and
generate Hashing key h(k). At this time, Identifier is input
parameter of the hash function. After generated h(k), We
separate bucket using h(k). At this time, the separate way is
that h(k)’s MSB is equal to 0 or 1. When data input to Bucket,
If that bucket occurs overflow-Bucket is full- we split that
bucket if h(k)’s next significant bit is 0 or 1.

TABLE I. IDENTIFIERS AND BINARY REPRESENTATION

Identifie

rs

Binary representation

(Output of hash

function)

a0 100 000

a1 100 001

b0 101 000

b1 101 001

c0 110 000

c1 110 001

c2 110 010

c3 110 011

Table I shows an example of Identifiers and binary
representation of Dynamic hashing method. The binary
representation is the output of the hash function. When we
input identifier ‘a0’ and ‘a1’ in Dynamic hashing system, the
state of the hash structure is same to below Figure 2.

Figure 2. Hash structure when we input identifier ‘a0’ and ‘a1’

Figure 3 shows the state of the hash structure when we
input identifier ‘b0’ and ‘b1’ to Dynamic Hashing system.
When we input identifier ‘b0’, bit sequence ‘10’ bucket is full
so we split this bucket. So we check next significant bit. After
check process, bit sequence ‘101’ bucket have 1 empty space.

Figure 3. Hash structure when we input identifier ‘b0’ and ‘b1’

Figure 4. Hash structure when we input identifier ‘c0’, ‘c1’, ‘c2’ and
‘c3’

Figure 4 shows the state of the hash structure when we
input all of the identifier (a0, a1, b0, b1, c0, c1, c2, and c3) to
Dynamic Hashing system. The Dynamic Hashing system has
split three times.

We can get an advantage when we use Dynamic Hashing.
First of all, we can maintain the efficiency of Data storage
space because the hash structure is transform dynamically
according to data. And Database performance does not
decrease when the number of data is increased. And when their
structure is split, they just split each Entry in bucket occurred
overflow. The last one is that all of the data is split according to
bit sequence so it seems to be sorted.

III. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of Hybrid Hash Join
and suggest how to solve that problem using Dynamic Hashing
structure. In future work, we try to make Dynamic Hash
structure and multi-bits split method. And we compare the
performance of Hybrid Hash Join and performance of Dynamic
Hash method. We expect Dynamic Hashing method show
better performance than Hybrid Hash Join.

After evaluating Dynamic Hash method, we try to sort data
on each bucket. If we sort data on the bucket, our algorithm
decreases time of proving stage because scanning time is
decreased.

2016 International Workshop on Emerging ICT

REFERENCES

[1] Y. Choi, B. On, G. S. Choi, I. Lee, A Comparative Study of PRAM-

based Join Algorithms, Journal of KIISE, Vol.42, No.3, pp.379-389

[2] D. Kang, D. Jung, J.Kang and J. Kim, μ-tree: An ordered index structure

for NAND flash memory, Proc. of the 7th ACM/IEEE International
Conference on Embedded Software, pp. 144-153, 2007.

[3] H. G. Shin, Y.S. Choi, B.Y. Won, I. G. Lee and G. S. Choi, The Hash

Sort Scheme for Database Management Systems, Korea Computer
Congress(KCC), Jeju University in Korea, 2015.

