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Abstract—We propose a new computational method for re-
ducing the number of complex multiplications of Phase-Only
Correlation (POC) function. This method employs Subsampled-
FFT which can compute the equally spaced frequency spectrum
of an input signal in N

2s
log N

s
complex multiplications, where

N is the signal length and s > 0 is an integer division
parameter. Consequently, the number of complex multiplications
of POC function has been reduced to 3N

2s
log N

s
+ N

s
by using

Subsampled-FFT, wheres that of the conventional POC function
is 3N

2
logN +N .
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I. INTRODUCTION

Phase-Only Correlation (POC) function[1] is one of the
popular correlation methods. POC function is highly robust
for noise because every amplitude spectrum of an input signal
is normalized. For this reason, POC function has been used
for several areas, such as motion estimation for videos[2], 3D
measurement[3], and biometric authentication[4].

The conventional algorithm for computing POC function,
however, needs to compute three N -point FFT (see Fig.1),
which means that the computational cost of POC function
tends to be enormous when the size N of an input signal is
large.

We propose a new computational method for this problem.
In our method, we only use the equally spaced frequency
spectrum of an input signal, which can be obtained efficiently
by using Subsampled-FFT, a variant technique of FFT. The
details are stated in Section IV.

Note that in this paper we discuss only the one-dimentional
case, but our algorithm can be extended to higher dimensions
as well.

II. PHASE-ONLY CORRELATION FUNCTION

In this section, we explain the conventional process to
compute POC function. The computational flow is shown in
Fig.1.

Suppose we have two input signals x and y ∈ RN , and
would like to compute POC function.

1) Compute the FFTs X and Y of x and y respectively.
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Fig. 1: Computational flow of POC function

2) Compute the normalized cross spectrum R ∈ CN

according to the following formula:

R(m) =
X(m)Y ∗(m)

|X(m)| |Y (m)|
(1)

where Y ∗(m) is the complex conjugate of Y (m).
3) Finally obtain the POC function r ∈ RN by comput-

ing the IFFT of R.
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Fig. 2: Typical POC function
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Fig. 3: Flow graph of Subsampled-FFT

A typical POC function is shown in Fig.2. The peak level
indicates the strength of the correlation between input signals,
and the peak index indicates the displacement value of input
signals.

III. SUBSAMPLED-FFT

Subsampled-FFT allows us to compute the equally spaced
frequency spectrum of an input signal efficiently. For simplicity
we will use the notation [N ] = {0, 1, . . . , N − 1}.

Suppose we have an input signal x ∈ RN , and define the
sub-vector xs for n ∈

[
N
s

]
such that

xs(n) =

s−1∑
k=0

x

(
n+

N

s
k

)
. (2)

Here we divide the signal into s parts and add them.

Then for m ∈
[
N
s

]
, the FFTs X and Xs of x and xs

satisfy

Xs(m) = X(sm) (3)
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Fig. 4: Computational flow of proposed method

Eq.(3) can be easely understood from the flow graph of
FFT (see Fig.3). In (2) we compute the part of the first log2(s)
stages of FFT, which corresponds to the red part of Fig.3,
and then computing the FFT of xs we can obtain the equally
spaced frequency spectrum Xs of the input signal as a result.

Thus, the equally spaced N
s -point frequency spectrum of

an N -point input signal can be obtained by computing N
s -point

FFT.

IV. POC FUNCTION USING SUBSAMPLED-FFT

In this section, we explain our proposed method for com-
puting POC function. The computational flow of our algorithm
is shown in Fig.4.

Suppose we have two input signals x and y ∈ RN , and
would like to compute POC function using Subsampled-FFT.

1) Make sub-vectors xs and ys ∈ RN
s from x and y

using (2).
2) Compute the FFTs Xs and Ys of xs and ys, which

satisfy (3).
3) Compute the normalized cross spectrum Rs ∈ CN

s ,
which also satisfies

Rs(m) = R(sm)

for m ∈
[
N
s

]
, where R ∈ CN is the normalized cross

spectrum computed in the conventional method.
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Fig. 5: Number of complex multiplication
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Fig. 6: MSE of r(0) with rs(0)

4) Finally obtain the POC function rs ∈ RN
s by com-

puting the IFFT of Rs, which satisfies

rs(n) =

s−1∑
k=0

r

(
n+

N

s
k

)
(4)

for n ∈
[
N
s

]
, where r ∈ RN is the POC function

obtained by the conventional method.

When two input signals have strong correlation, much of the
energy of POC function would be concentrated on the peak
index (around n = 0 and n = N −1 if the displacement value
of input signals is small enough). Hence we can approximate
r(n) ≈ 0 except around n = 0 and n = N − 1, and then from
(4) we obtain

rs(n) ≈ r(n) (5)

for n =
[
N
s

]
−N

2s . Here r and rs are periodic from the property
of FFT.

Therefore the computational cost of POC function can be
reduced by making the input signal 1

s times shorter.

V. COMPUTATIONAL COST AND EFFECT OF ALIASING

The number of complex multiplications of one-dimentional
POC function can be reduced to 3N

2s logNs + N
s (see Fig.5).

The case of s = 1 is just as that of conventional POC function.
It can be seen that the number of complex multiplications
become smaller as s become larger.

We evaluate the effect of aliasing on the peak of POC
function that Subsampled-FFT causes. In this experiment we
use two one-dimentional signals x and xWGN ∈ R1024. Vector
x is a row vector extracted from an image signal, and xWGN

is defined by

xWGN(n) = x(n) + vWNG(n) (6)

where vWGN(n) is Gaussian white noise with zero mean. Then
we compute POC function for x and xWGN with proposed
method and evaluate the effect of aliasing according to the
following formula:

RMS = 10 log10 E

[(
rs(0)− r(0)

r(0)

)2
]

(7)

where r(0) and rs(0) are the peaks of the POC functions
because there is no displacement between x and xWGN. The
result of this experiment is shown in Fig.6. It can be seen that
the number of RMS become worse as s become larger.

These results mean that there is an trade-off between the
computational cost and the effect of aliasing.

VI. CONCLUSION

In this paper we have proposed a new computational
method for reducing the computational cost of POC function.
Our approach is based on reducing the number of frequency
spectrum used for computing POC function. Although there
is still an trade-off between the computational cost and the
effect of aliasing on the peak, our method can reduce the
computational cost efficiently without loss of accuracy if the
division parameter s is chosen appropriately.
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