
2016 International Workshop on Emerging ICT

Hybird Sorted Hash Join

Hyun-Kwang Shin

Information Communication Engineering

Yeungnam University

Gyungbuk Gyungsan, Korea

shg3786@ynu.ac.kr

Gyu-Sang Choi

Information Communication Engineering

Yeungnam University

Gyungbuk Gyungsan, Korea

castchoi@ynu.ac.kr

Abstract— In this paper, we propose a novel hash-join scheme with a

name Hybrid Sorted Hash-join which reduces probing time due to the sorted
records only within a bucket, whereas the hybrid hash join
scheme sequentially scans records in a hash table until the corresponding
record is matched. Our proposed scheme shows the significant performance
improvement compared to the hybrid hash join scheme and will conduct in-
depth performance results between our proposed scheme and the prior
scheme.

Keywords-component; Database, Join, Hybrid Hash-Join,

Grace Hash-Join

I. INTRODUCTION

In this paper, we propose a new hash-join scheme, called
hybrid sorted hash-join, to sort records, while the hybrid hash-
join scheme sequentially scans records in hash table until the
corresponding records is matched[1][2][3][4].

To insert a new record into a certain bucket in the
proposed scheme, it first checks whether a bucket is full or not.
If the bucket is full, it moves to the next bucket. If the bucket
is not full, it compares the key of the record to insert with the
key of the last record in the bucket. If the key of the record to
insert is smaller than the key of the last record in the bucket, it
moves the last record to the right and then compares the new
record with preceding record of the last record. Otherwise, it
simply insert the new record next the last record. It means that
the new record will be inserted the proper slot in the bucket,
by keeping the ascending order among records within the
bucket. In our proposed scheme, we use binary search
algorithm to find the record with in a bucket, instead of
scanning records. To probe the record, it visits the first bucket
and find the corresponding record using binary search
algorithm. If the record is not found, it moves to the next
bucket to search, and keep doing this until the record is found.

Now, we will explain the proposed scheme with a simple
example, and Figure 1 depicts how the hybrid sorted hash-join
works. In the second phase in our proposed scheme, the
directory entry 0 initially has one bucket to hold 4 records, 8,
16, 24 and 40, as shown in Figure 1 (a). Within the bucket, 4
records are stored as ascending order, and a new record 80
will be inserted to this directory entry. Since the bucket has no
space to store it, the new bucket is first allocated and then the
record is inserted to the first slot in the second bucket. Figure
1 (b) shows the status of the hash table after the new record 80
is added. Now, we will add the new record 32 to the first
directory entry in the hash table. Since the first bucket is full,

it checks whether the next bucket has available space to store
the new record. The new record will be added to the first slot
and the record in the second bucket is moved to the second
slot in the second bucket, in order to keep ascending order
among records within the second bucket.

Figure 1. Hybrid Sort Hash Join

II. EXPERIMENT VALIDATION

In this section, we will explain the experiment set-up and
then show performance evaluation.

A. Experiment Set-up

In our experiments, we synthetically make two tables R and
S, as shown in Figure 3. Table R has the primary key Attr_A
and the other attribute Attr_C, and S has two attributes Attr_B
and Attr_C which are both foreign keys. It means that the
combination of the attributes Attr_B and Attr_C is the primary
key of table S. In our experiments, all attributes value of tables
R and S are randomly generated using normal distribution in
most experiments, including the primary key. In addition,
Table 1 shows the configurations of our simulation test-bed. In
this paper, HHJ and HSJ stands for Hybrid Hash Join and
Hybrid Sorted Hash Join (i.e., the proposed scheme) schemes,
respectively.

Figure 2. The schema of tables R and S

2016 International Workshop on Emerging ICT

Table 1. Simulation test-bed Configuration

CPU Intel(R) Core(TM) i7-4790 Quad-Core, 3.6 GHz
Front-side Bus 1.6 GHz
Main Memory 16 Gbytes

Storage Interface Serial ATA3
HDD Seagate Barracuda ST1000DM003 7200 RPM,

1 Tbytes

OS Cent OS 6.5 (Linux 2.6.34)
File System ext4

B. Performance Comparison

We first experiment the join operation between R and S
tables. In this experiment, the table S has only 100K records
but the table R has the varied number of records from 100K to
1 million. In the first phase, it reads and hashes tuples of the
tables R into buckets using a certain hash function, and then
the hashed tuples are written back to disk. It does the same
thing to tuples in table S. After the first phase, the tables S and
R will be used to build and probe a hash table, respectively,
during the second phase, because the number of records in
table S is smaller than table R.

Figure 3 shows the completion times of hybrid hash join
scheme and the proposed scheme by varying the number of
records of table R from 100K to 1 million. We broke down the
total elapsed time to hashing and disk I/O times in the first
phase, and building, probing and disk I/O times in the second
phase. As we expected, the probing time in hybrid hash join
scheme is dominant to scan the records sequentially since the
records in the buckets are not sorted. Compared to the hybrid
hash join scheme, the proposed scheme shows the
significantly reduced probing time of the second phase
whereas the building time is deteriorated little. In the proposed
scheme, it spends more time to make records sorted within
only buckets, but much less time to probe within a bucket by
the binary search scheme. In this experiment, the execution
times of the first phase between these two schemes are exactly
the same since the operations of the first phases are the
same.

Figure 3. The Analysis of Completion Times between Hybrid Hash Join and
Hybrid Hash Sort Join by Varying the Number of Records in Table R

Next, we set the table R to only 100K records and the table

S to the varied number of records from 100K to 1 million in
this experiment. After the first phase, the tables R and S will

be used to build and probe a hash table during the second
phase, respectively, since the number of records of table R is
smaller than table S in this experiment. In Figure 4 (a), the
proposed scheme shows much shorter completion times
compared to the hybrid hash join scheme as the number of
records in table S increases 100K to 1 million. In this
experiment, it needs to scan all records across buckets in
hybrid hash join scheme since we assume that records in table
R are not sorted. In contrast, the hybrid sorted hash join can
significantly reduce the scanning time using binary search
method within a bucket because the records within only a
bucket are sorted.

(a) Table R is not sort

(b) Table R is not sort

Figure 4. The Analysis of Completion Times between Hybrid Hash Join and

Hybrid Hash Sort Join by Varying the Number of Records in Table S

In Figure 4 (b), the hybrid hash join and the proposed
schemes show similar completion times. In this experiment,
the binary search algorithm can be applied for both the hybrid
hash join and proposed schemes since we assume that all
records in table R are sorted according to the primary key.

Next, we additionally use uniform and zipf distributions to
generate records in tables R and S randomly, in addition to
normal distribution in previous experiments. In this
experiment, the number of records in table R is varied from
100K to 1 million, while the number of records in Table S is
100K. During the second phase the tables S and R will be used
to build and probe a hash table, respectively, because the
number of records in table S is smaller than table R. Figure 5

2016 International Workshop on Emerging ICT

depicts that the proposed hybrid sorted hash join improves
completion times up to 170 % across different distributions
compared to the hybrid hash join scheme. The reason why the
uniform distribution show short completion times compared to
other distributions is that it can evenly divide the records
across hash directory entries.

Figure 5. The Analysis of Completion Times between Hybrid Hash Join and

Hybrid Hash Sort Join by Varying the Distributions

Now, we varied bucket sizes, record sizes, and the number

of records. Figure 6 show the completion times of these two
schemes as the bucket size increases from 512 Bytes to 16
Kbytes. The completion times of two schemes show the
largest at the bucket size 512 byte but the smallest the at the
bucket size 16 Kbytes. As the bucket size increases, it shows
shorter completion times because the bigger bucket size can
hold more records and each directory entry in a hash table has
less the number of buckets. It means that the time to scan can
significantly be reduced by the binary search algorithm if each
bucket has more records. In Figure 7, the completion times of
these two schemes are decreased as the record size increases
from 8 Bytes to 128 bytes. A bucket can store less records at
the bigger record sizes compared to smaller record sizes. A
large record size needs more the number of buckets, and it
incurs more searching time. In our experiment, the record
sizes as 8 and 128 bytes show the shortest and longest
completion times, respectively.

Figure 6. The Analysis of Completion Times between Hybrid Hash Join and

Hybrid Hash Sort Join by Varying the Bucket Size

In Figure 8, the proposed scheme improves the completion

times up to 400% compared to the hybrid hash join scheme. In
this experiment, the more buckets are linked to each hash
directory entry as the number of records are increased from
50K to 800K, which means that it needs more probing time to
visit more buckets. The hybrid hash join scheme takes
negligible building time but much huge probing time since it
requires to scan all records across buckets. In contrast, the
proposed scheme takes more building time but much shorter
probing time because the binary search algorithm is used to
search a bucket.

Figure 7. The Analysis of Completion Times between Hybrid Hash Join and

Hybrid Hash Sort Join by Varying the Record Size

Figure 8. The Analysis of Completion Times between Hybrid Hash Join and
Hybrid Hash Sort Join by Varying the Number of Records

III. CONCLUSIONS

In this paper, we proposed a new hash-join scheme, called
hybrid sorted hash-join which outperforms the prior scheme,
hybrid hash-join scheme, since it sequentially scans records in
hash table until the corresponding records is matched. In the
future, we will evaluate in-depth performance results between
our proposed scheme and the prior scheme.

REFERENCES

[1] J. Do and J. Patel, "Join processing for Flash SSDs:Remembering past
lessons", InProceedings of the Fifth International Workshop on Data
Management on New Hardware, pp. 1-8, Jun 2009.

2016 International Workshop on Emerging ICT

[2] J. M. Patel, M. J. Carey, and M. K. Veron, "Accurate modeling of the
hybrid hash join algorithm." In ACM SIGMETRICS Performance
Evaluation Review, vol. 22, pp. 56-66, May 1994.

[3] K. Bratbergsengen, "Hashing Methods and Relational Algebra
Operations.", In proceedings of the 10th International Conference on
Very Large Data Bases(VLDB), pp. 323–333, August 1984.

[4] L. Shapiro, "Join Processing in Database Systems with Large Main
Memories.", ACM Transactions on Database Systems, vol. 11(3), pp.
239–264, September 1986.

